
IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

NCAIT 2017

JSS Academy of Technical Education
Vol. 4, Special Issue 8, May 2017

Copyright to IARJSET IARJSET 60

Privacy-Preserving Access to Big Data in Cloud

and Load balancing using ORAM Algorithm

Swathi B R

Student, RNSIT, Bangalore

Abstract: In the era of big data, many users and companies start to move their data to cloud storage to simplify data

man-agement and reduce data maintenance cost. HoIver, security and privacy issues become major concerns because

third-partycloud service providers are not always trusty. Although data contents can be protected by encryption, the

access patterns that contain important information are still exposed to clouds or malicious attackers. In this paper, I

apply the ORAM algorithm to enable privacy-preserving access to big data that are deployed in distributed file systems

built upon hundreds or thousands of servers in a single or multiple geo-distributed cloud sites. Since the ORAM

algorithm would lead to serious access load unbalance among storage servers, I study a data placement problem to

achieve a load balanced storage system with improved availability and responsiveness. Due to the NP-hardness of this

problem, I propose a low-complexity algorithm that can deal with large-scale problem size with respect to big data.

Extensive simulations are conducted to show that my proposed algorithm finds results close to the optimal solution,

and significantly outperforms a random data placement algorithm.

I. INTRODUCT ION

Big data has emerged in various domains including

science, engineering and commerce. For example, the

amount of photos currently stored by Facebook is over 20

petabytes, and it continues to grow with 60 terabytes each

Iek [1]. In the era of big data, cloud becomes a perfect

candidate for data storage by providing virtually unlimited

storage that can be accessed over network. By outsmycing

large volumes of data to cloud storage, such as Google
Drive, Dropbox and Amazon S3, users can simplify their

data management and reduce data maintenance cost due to

the pay-as-you-use model. HoIver, some users and

companies still hesitate to move their data to cloud

because of security and privacy concerns. Although

encryption can protect the data confidentiality, it is

insufficient because access patterns can also leak

important information. For instance, over 80% of

encrypted email queries can be identified according to

access pattern in [2].

The access privacy problem is first addressed by private

information retrieval (PIR) technique [3] that allows a user
to retrieve a block from a database of N items held by a

server that learns nothing about this block. Unfortunately,

Sion et al. [4] have shown that existing PIR schemes will

never be more efficient than a trivial PIR scheme of

downloading the entire database. The extremely poor

performance of PIR makes it inapplicable in cloud storage

with big data.

Oblivious RAM (ORAM) is later proposed to hide data

access privacy with improved performance. Its basic idea

isto periodically reshuffle data blocks stored in an

untrusted server such that user access cannot be tracked.

Goodrich et al.

[5] have proposed an ORAM algorithm with O(N)

clientstorage to achieve O(log N) amortized cost, i.e.,

each oblivious read or write leads to O(log N) data access

operations on average. Shi et al. [6] further reduce the

client storage to O(1).

In this paper, I apply the ORAM algorithm to enable

privacy-preserving access to big data in clouds. To deal

with the challenge of accommodating huge volume of data

that continuously grows in high velocity, big data are

stored in distributed file systems built upon hundreds or

thousands of servers in a single or multiple geo-distributed

cloud sites. When ORAM is directly applied on such
distributed storage systems, I observe that even if all data

blocks are evenly accessed by users, access load on

servers would be seriously unbalanced, i.e., lots of data

access requests are sent to several servers, but only a few

to others. The servers with high load are apt to be system

bottleneck or failure points in the system. Motivated by

this observation, I exploit the data access characteristics of

ORAM, and propose a data placement algorithm to

achieve load balance, thus improving overall system

availability and responsiveness.

The main contributions of this paper are summarised as

fol-lows. First, I study the privacy-preserving data access
to big data in an untrusted cloud by applying the ORAM

algorithm. In conjunction with encryption, ORAM-based

solutions can hide not only data contents but also access

patterns from third-party cloud service provider and

malicious attackers. Second, I investigate a load balance

problem in applying ORAM on distributed file systems.

This problem is proved to be NP-hard, and formulated as a

mixed integer linear programming (MILP) problem. I

propose a low-complexity algorithm that can deal with

large-scale problem instances with respect to big data.

Third, extensive simulations are conducted to show that

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

NCAIT 2017

JSS Academy of Technical Education
Vol. 4, Special Issue 8, May 2017

Copyright to IARJSET IARJSET 61

the performance of my proposed algorithm is close to the

optimal solution, and significantly outperforms a random

data placement algorithm.

The rest of this paper are organized as follows. I review

important related work in Section II. Section III presents

some necessary preliminaries about ORAM algorithm and

my motivation. The system model and problem

formulation are given in Section IV, folloId by an efficient

algorithm proposed in Section V. I show extensive

simulation results in Section VI. Section VII finally

concludes this paper.

II. RELATED WORK

A. Cloud storage

Cloud storage has attracted a lot of attentions from both

industry and academic. Many Ill-known cloud service

providers have started their cloud storage services during

past few years, such as Microsoft SkyDrive, Amazon S3,

and Google Drive. RAID (Redundant Array of

Inexpensive Disks) technique is integrated in HAIL [7]

that manages remote file integrity and availability across a

collection of servers. Similarly, Dabek et al. [8] use

RAID-like techniques to ensure the availability and

durability of data in distributed systems. To improve the
reliability and security of cloud storage, Bessani et al. [9]

have proposed a distributed storage system called

DEPSKY that integrates encryption, encoding and

replication. IRIS [10] is proposed as an authenticated file

system that lets enterprises store data in the cloud with

resilience against potentially untrusted cloud providers.

There are several pro-posals dealing with data availability

by constructing distributed storage systems across several

cloud sites. Wu et al. [11] have proposed SPANStore, a

key-value storage system that exports a unified view of

storage services in geo-graphically distributed data
centers. It minimizes an application provider’s cost with

three key techniques, i.e., exploiting pricing discrep-ancies

across providers, estimating application workload at the

right granularity, and minimizing the usage of

computational resmyces.

B. Oblivious RAM

As originally proposed by Goldreich and Ostrovsky [12],

ORAM allows a trusted processor to use an untrusted

RAM. Most existing ORAM solutions use the basic

memory struc-ture suggested by Ostrovsky’s Hierarchical
Scheme [13]. The ORAM is arranged in a series of

progressively larger caches. Each cache consists of a hash

table of buckets. When a block is requested, the algorithm

checks a bucket at each level of the hierarchy. If the block

is found, the search continues for a dummy block such that

the location of his desired block is hidden. Finally, the

block is reinserted into the top-level cache. When a cache

is close to overflowing, it is obliviously shuffled into the

cache below it.

Recent ORAM work has explored optimisations of the

classic Hierarchical Scheme [13], [14], including the use

of cuckoo hashing [15] and Bloom filters [16]. Williams et

al. [17] have presented SR-ORAM as the first single-

round-trip polylogarithmic time ORAM that requires only

logarithmic client storage. Taking only a single round trip

to perform a query, SR-ORAM has an online
communication/computation cost of O(log n log log n).

Lorch et al. [18] have presented Shroud, a general storage

system that hides data access pat-terns from the servers.

Shroud uses many secure coprocessors acting in parallel as

client proxies in the data center.

III. PRELIMINARIES AND MOTIVATION

In this section, I first present some necessary background

about ORAM, and then show the load unbalance

phenomenon that motivates my proposal.

Fig. 1. ORAM-based cloud storage.

A. The ORAM algorithm
I consider a client that would like to store and retrieve its

big data in cloud that is honest but curious. In other words,

the cloud cannot tamper with or modify the data, but could

learn information about the data. The data are divided into

blocks, each of which is identified by a unique address.

For example, a typical value of block size is 64KB or

256KB. Data stored on cloud are organized as a tree,

where each node is referred to as a bucket that stores

several data blocks. An example of a binary tree structure

is shown in Fig. 1. Note that any arbitrary tree structure is

applicable in ORAM. Following the work in [6], I

translate each read or write operation into two primitives
ReadAndRemoveand Add that are definedas follows.

ReadAndRemove(u): given an address u specifiedby

theclient, the cloud returns the corresponding data block,

and removes it from storage.

Add(u, d): the client writes block d to address u at the

clientstorage.

With above two primitives, each read(u) operation can be

replaced by a ReadAndRemove(u)folloId by an Add(u, d)

that writes the same data block back to address u.
Similarly, to implement a write(u, d) operation, I conduct

a redundant ReadAndRemove(u) before Add(u, d).

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

NCAIT 2017

JSS Academy of Technical Education
Vol. 4, Special Issue 8, May 2017

Copyright to IARJSET IARJSET 62

Although the numberof access operations are doubled in

ORAM, it prevents the untrusted cloud from

distinguishing read and write operations. The

implementation of ReadAndRemove(u) and Add(u, d) is

critical for hiding access patterns in ORAM. When a
datablock is written into the cloud storage, it is always

inserted into the root bucket in the level 0 as shown in Fig.

1. As more data blocks are being added in the root bucket,

it will eventually be full without residual capacity to

accommodate new blocks. To avoid overflowing, data

blocks in each non-leaf bucket are periodically evicted to

its children buckets. I assign a random number called

designator to each newly added data block to indicate

which leaf bucket it is evicted to along the tree. Note that

only the client knows the mapping betIen block address

and its associated designator. At each level of tree, the
client randomly chooses several buckets to evict. In order

to prevent the cloud from tracking the eviction process,

dummy blocks are inserted into other children buckets that

do not receive the real data block.

To read a data block, the client first looks up its

correspond-ing designator in local storage, and then reads

all buckets along the path betIen the root and the leaf

bucket indicated by this designator in the tree. When the

data block is found, I remove it from its current bucket,
and write it back to the root bucket with a new designator.

In such a way, the cloud cannot infer which block is read

because repeated reads for the same block will produce

different lookup paths through the tree.

B. Motivation

To deploy an ORAM-based storage in a distributed

system, I need to partition the corresponding tree structure

into multiple parts, each of which is stored in a server. For

example, I consider to store the ORAM tree shown in Fig.

1 into three servers, each of which can accommodate at
most 5 buckets. A partition scheme is shown in Fig. 1.

Since the root bucket is accessed in each read and write

operation, the server A holding the root bucket has the

highest access load. On the other hand, each read

operation only involves one leaf node, leading to the loIst

load on server B that stores five leaf nodes in level 3.

From this example, I observe that ORAM-based storage

would lead to serious unbalanced data access load among

servers without a delicate bucket placement, which

motivates us to develop an algorithm to optimize the data

placement in next section.

IV. SYSTEM MODEL AND PROBLEM

FORMULATION

I consider to deploy an ORAM-based storage with n

buckets of size B to m servers residing in multiple clouds.

Some authorized users generate a set of access requests

that have been translated into a serious of

ReadAndRemove(u) and Add(u, d) operations. Each

bucket is the minimum storageunit, and is associated with

an access rate ai due to the read, write, and eviction

operations in ORAM. Note that the access rate of each

bucket can be estimated according to the characteristics of

the ORAM algorithm, such as tree structure, and eviction

probability. The i-th server can accommodate at most Ci

buckets. Based on the system model, my load balance
problem can be described as a max-min problem as

follows.

Definition 1: The problem of load balance for

deployingORAM-based storage in clouds (LBOC): given

a tree-based ORAM structure, and a set of storage servers,

the LBOC problem seeks a data placement such that the

maximum access load among all servers is minimized.

Since a bucket is the minimum access unit in ORAM, I

define binary variables xij to describe bucket placement as

follows.

 1, if the i-th bucket is placed on the j-th server,

xij =
0, otherwise.

I also define a variable yj to represent the total access rate

in the j-th server, and the LBOC problem can be

formulatedas a mixed integer linear programming (MILP)

as follows.

min Y

yj ≤ Y, ∀1 ≤ j ≤ m; (1)

N

yj =aixij , ∀1 ≤ j ≤ m; (2)

i=1

M

xij = 1, ∀1 ≤ i ≤ n; (3)

j=1

N

xij ≤ Cj , ∀1 ≤ j ≤ m; (4)

i=1

xij∈ {0, 1}, ∀1 ≤ i ≤ n, 1 ≤ j ≤ m.

In above formulation, variable Y denotes the maximum

access rate of all servers, which is guaranteed by

constraint

(1). The calculation of total access rate yj of each server is

represented by constraint (2). I impose constraint (3)

because each bucket has to be placed at only one server.

Finally, the capacity constraint of each server is

represented by (4). In the following, I analyze the hardness

of the LBOC problem by proving its NP-hardness in a

formal way.

Theorem 1: The LBOC problem is NP-hard.
Proof: In order to prove an optimization problem tobe NP-

hard, I need to show the NP-completeness of its decision

form, i.e., I attempt to find a bucket placement such that

the maximum access load is no greater than Y . It is easy

to see that such a problem is in NP class as the objective

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

NCAIT 2017

JSS Academy of Technical Education
Vol. 4, Special Issue 8, May 2017

Copyright to IARJSET IARJSET 63

associated with a given solution can be evaluated in a

polynomial time. The remaining proof is done by reducing

the Ill-known 2-partition problem, i.e., given a set of

numbers S = {s1, s2 , ..., sn }, I attempt to divide them into

two sets S1 and S2 such that si∈S1si = sj∈S2sj .

I now describe the reduction from the 2-partition problem

to an instance of the LBOC problem. I create an ORAM

storage with n buckets, each of which has an access rate ai

= si. There are two severs, each of which can store at most

n

buckets. Finally, I let Y =

1

s . It is easy to verify

2

 si∈Si

that the 2-partition problem has a solution if and only if

the constructed LBO problem has a solution that satisfies
the load requirements.

V. ALGORITHM DESIGN

Due to the NP-hardness, I design an efficient heuristic

algorithm to solve the LBOC problem in this section. My

basic idea is to first solve the MILP problem formulated in

last section by relaxing all integer variables, and then find

a feasible integer solution by rounding the results.

Although the time complexity of this algorithm is

polynomial, additional challenges arise in dealing with big
data storage. The ORAM tree would contain a large

number of buckets to accommodate big data, resulting in

too many variables and constraints in the formulation.

Solving such a large-scale linear programming, even with

all real variables, would be time-consuming, or

evenimpossible because of physical memory constraints

on some computers.

To overcome this difficulty, I propose a low-complexity

algorithm called ILB (Iterative Load Balancer) to
iteratively place buckets on servers, such that I only need

to deal with a small-scale linear programming in each

iteration. The pseudo code of my algorithm is shown in

the following Algorithm 1.

Algorithm 1 The ILB algorithm

1: C j
res = Cj , ∀1 ≤ j ≤ m;

2: yj
curr = 0, ∀1 ≤ j ≤ m;

3: while there are buckets that haven’t been placed do

4: put a set of unplaced buckets in set N ;
5: solve the following linear programming;

 min Y

yj + yj
curr ≤ Y, ∀1 ≤ j ≤ m; (5)

yj = aixij , ∀1 ≤ j ≤ m; (6)

 i∈N

 m

 xij = 1, ∀i∈ N ; (7)

 j=1

xij ≤ C j
res , ∀1 ≤ j ≤ m; (8)

i∈N

0 ≤ xij ≤ 1, ∀i∈ N , 1 ≤ j ≤ m. (9)

6: sort variables xij in a descending order according to

their results;

7: for each xijin the sorted order do

8: if the i-th bucket in N hasn’t been placed andC

j
res> 0 then

9: place this bucket on the j-th server;

10: C res = C res

j j − 1;
11: ycurrcurr

35

00

OP

T

 ILB

30
00

RA
ND

lo
ad

 25

00

ac
ce

ss

20

00

M
ax

im
u

m

15

00

10

00

50

0

0

 1 2 3 4 5 6 7 8 9

1

0

Instance

Fig. 2. Comparison with optimal solution in 10 random

instances.

VI. PERFORMANCE EVALUAT ION

In this section, I study the performance of my proposed

algorithm under various network settings. For comparison,

I also show the performance of a random placement

algorithm denoted by RAND. All simulations are

conducted using Mat- lab in a computer equipped with 3.4

GHz Intel Core i7 CPU and 8G memory.

I first evaluate the performance of ILB by comparing its

results with the optimal solution. I consider to deploy 200

data buckets to 10 servers, and show the results of 10

random instances in Fig. 2. In average, the performance of

ILB is 1.15 times of optimal solution, while the

corresponding ratio of RAND is 1.91.

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

NCAIT 2017

JSS Academy of Technical Education
Vol. 4, Special Issue 8, May 2017

Copyright to IARJSET IARJSET 64

j and yj residual capacity and current access load on the j-

th server, respectively. After their initialization in lines 1

and 2, I conduct bucket placement in iterations in the

following while loop. In each iteration, I consider a set of

buckets N , and solve a linear programming with respect
to N , current access load and Cj

res on each server.

Different from the MILP in last section, I relax xij by

letting it be a real variable betIen 0 and 1 as shown in (9).

In addition, I take current access load ycurr into

consideration in constraint (5), and constrain j the

capacity of each server with C res in (8).After solving this

linear programming, I sort variable xij in a

descending order according to their results. I place the

i-th bucket in set N to the server with maximum value of

xij among all servers. Such placement is expected

toachieve comparable performance to the optimal
solution Because the real value xij would represent the

probability of the corresponding optimal data placement.

Finally I finish current iteration by updating the values of

C resj and by averaging results over 50 random instances.

The influence of number of buckets is first investigated by

changing its value from 600 to 1000, and the number of

servers is fixed to 10. The server capacity is randomly

specified as a Gaussian distribution with mean of 100 and

variance of 20. In each iteration of ILB, I consider data

placement for 100 buckets.

As shown in Fig. 3, the performance of both algorithms

shows as an increasing function of bucket number.

Moreover, the performance gap betIen two algorithms

increases as the bucket number grows. For example, when

the number of buckets is 600, the maximum access rate of

RAND is 17% higher. The performance gap increases to

33% as bucket number grows to 1000. The results indicate

that ILB can effectively reduce the maximum access rate

because of my delicate design.

I then study the effect of different variance of server

capacity in instances with 1000 buckets and 10 servers.
The mean value of server capacity is fixed to 100. As

shown in Fig. 4, although the performance of both

algorithms increases as the variance grows, their

performance gap becomes small.

That is because the servers with small capacity quickly

becomes full during data placement, while lots of buckets

have to be accommodated in the servers with large

capacity, which leading to high

Fig. 4. Maximum access rate versus different variance of

server capacity.

Fig. 5. Execution time under different instance scales.

VII. CONCLUSION

In this paper, I apply the ORAM algorithm to achieve

privacy-preserving access to big data in clouds. I observe a
load unbalance phenomenon after deploying ORAM-

based storage to multiple servers, which motivates us to

investigate a data placement problem to achieve load

balance.

This problem is proved to be NP-hard. I propose a low-

complexity algo-rithm to solve this problem with respect

to large data volumes. Simulation results show that the

performance of my proposed algorithm is close to optimal

solution, and it outperforms a random data placement

algorithm.

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

NCAIT 2017

JSS Academy of Technical Education
Vol. 4, Special Issue 8, May 2017

Copyright to IARJSET IARJSET 65

REFERENCES

[1] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel, “Finding a

needle in haystack: Facebook’s photo storage,” in USENIX OSDI,

2010, pp. 1–8.

[2] M. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern

disclosure on searchable encryption: Ramification, attack and

mitigation,” in Networkand Distributed System Security

Symposium, 2012.

[3] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private

informa-tion retrieval,” Jmynal of the ACM (JACM), vol. 45, no. 6,

pp. 965–981, 1998.

[4] R. Sion and B. Carbunar, “On the computational practicality of

private information retrieval,” in Proceedings of the Network and

DistributedSystems Security Symposium, 2007, pp. 2006–06.

[5] M. T. Goodrich and M. Mitzenmacher, “Mapreduce parallel cuckoo

hashing and oblivious ram simulations,” CoRR, vol. abs/1007.1259,

2010.

[6] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious ram with

o ((logn) 3) worst-case cost,” in Advances in Cryptology–

ASIACRYPT 2011. Springer, 2011, pp. 197–214.

[7] K. D. BoIrs, A. Juels, and A. Oprea, “Hail: A high-availability and

integrity layer for cloud storage,” in Proceedings of the 16th

ACMConference on Computer and Communications Security,

2009, pp. 187–198.

[8] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica,

“Wide-area cooperative storage with cfs,” in ACM Symposium on

OperatingSystems Principles, 2001, pp. 202–215.

[9] A. Bessani, M. Correia, B. Quaresma, F. Andre´, and P. Sousa,

“Depsky: Dependable and secure storage in a cloud-of-clouds,” in

Proceedings ofthe Sixth Conference on Computer Systems, 2011,

pp. 31–46.

[10] E. Stefanov, M. van Dijk, A. Juels, and A. Oprea, “Iris: A scalable

cloud file system with efficient integrity checks,” in Proceedings of

the 28thAnnual Computer Security Applications Conference, 2012,

pp. 229–238.

[11] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Mad-

hyastha, “Spanstore: Cost-effective geo-replicated storage spanning

mul-tiple cloud services,” in ACM Symposium on Operating

Systems Princi-ples, 2013, pp. 292–308.

[12] O. Goldreich, “Towards a theory of software protection and

simulation by oblivious rams,” in ACM symposium on Theory of

computing. ACM, 1987, pp. 182–194.

[13] R. Ostrovsky, “Efficient computation on oblivious rams,” in

Proceedingsof ACM STOC, 1990, pp. 514–523.

[14] O. Goldreich and R. Ostrovsky, “Software protection and

simulation on oblivious rams,” Jmynal of the ACM (JACM), vol.

43, no. 3, pp. 431–473, 1996.

[15] E. Kushilevitz, S. Lu, and R. Ostrovsky, “On the (in) security of

hash-based oblivious ram and a new balancing scheme,” in ACM-

SIAM SODA, 2012, pp. 143–156.

[16] P. Williams, R. Sion, and B. Carbunar, “Building castles out of

mud: practical access pattern privacy and correctness on untrusted

storage,” in Proceedings of the 15th ACM conference on Computer

and commu-nications security, 2008, pp. 139–148.

[17] P. Williams and R. Sion, “Single round access privacy on

outsmyced storage,” in ACM CCS, 2012, pp. 293–304.

[18] J. R. Lorch, B. Parno, J. Mickens, M. Raykova, and J. Schiffman,

“Shroud: ensuring private access to large-scale data in the data

centers,” in USENIX FAST, 2013, pp. 199–213.

