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Abstract: In the era of big data, many users and companies start to move their data to cloud storage to simplify data 

man-agement and reduce data maintenance cost. HoIver, security and privacy issues become major concerns because 

third-partycloud service providers are not always trusty. Although data contents can be protected by encryption, the 

access patterns that contain important information are still exposed to clouds or malicious attackers. In this paper, I 

apply the ORAM algorithm to enable privacy-preserving access to big data that are deployed in distributed file systems 

built upon hundreds or thousands of servers in a single or multiple geo-distributed cloud sites. Since the ORAM 

algorithm would lead to serious access load unbalance among storage servers, I study a data placement problem to 

achieve a load balanced storage system with improved availability and responsiveness. Due to the NP-hardness of this 

problem, I propose a low-complexity algorithm that can deal with large-scale problem size with respect to big data. 

Extensive simulations are conducted to show that my proposed algorithm finds results close to the optimal solution, 

and significantly outperforms a random data placement algorithm. 
 

I.  INTRODUCT ION 

 

Big data has emerged in various domains including 

science, engineering and commerce. For example, the 

amount of photos currently stored by Facebook is over 20 

petabytes, and it continues to grow with 60 terabytes each 

Iek [1]. In the era of big data, cloud becomes a perfect 

candidate for data storage by providing virtually unlimited 

storage that can be accessed over network. By outsmycing 

large volumes of data to cloud storage, such as Google 
Drive, Dropbox and Amazon S3, users can simplify their 

data management and reduce data maintenance cost due to 

the pay-as-you-use model. HoIver, some users and 

companies still hesitate to move their data to cloud 

because of security and privacy concerns. Although 

encryption can protect the data confidentiality, it is 

insufficient because access patterns can also leak 

important information. For instance, over 80% of 

encrypted email queries can be identified according to 

access pattern in [2]. 

The access privacy problem is first addressed by private 

information retrieval (PIR) technique [3] that allows a user 
to retrieve a block from a database of N items held by a 

server that learns nothing about this block. Unfortunately, 

Sion et al. [4] have shown that existing PIR schemes will 

never be more efficient than a trivial PIR scheme of 

downloading the entire database. The extremely poor 

performance of PIR makes it inapplicable in cloud storage 

with big data. 
 

Oblivious RAM (ORAM) is later proposed to hide data 

access privacy with improved performance. Its basic idea 

isto periodically reshuffle data blocks stored in an 

untrusted server such that user access cannot be tracked. 

Goodrich et al. 

[5] have proposed an ORAM algorithm with O(   N ) 

clientstorage to achieve O(log N ) amortized cost, i.e.,  

 

 

each oblivious read or write leads to O(log N ) data access 

operations on average. Shi et al. [6] further reduce the 

client storage to O(1). 
 

In this paper, I apply the ORAM algorithm to enable 

privacy-preserving access to big data in clouds. To deal 

with the challenge of accommodating huge volume of data 

that continuously grows in high velocity, big data are 

stored in distributed file systems built upon hundreds or 

thousands of servers in a single or multiple geo-distributed 

cloud sites. When ORAM is directly applied on such 
distributed storage systems, I observe that even if all data 

blocks are evenly accessed by users, access load on 

servers would be seriously unbalanced, i.e., lots of data 

access requests are sent to several servers, but only a few 

to others. The servers with high load are apt to be system 

bottleneck or failure points in the system. Motivated by 

this observation, I exploit the data access characteristics of 

ORAM, and propose a data placement algorithm to 

achieve load balance, thus improving overall system 

availability and responsiveness. 
 

The main contributions of this paper are summarised as 

fol-lows. First, I study the privacy-preserving data access 
to big data in an untrusted cloud by applying the ORAM 

algorithm. In conjunction with encryption, ORAM-based 

solutions can hide not only data contents but also access 

patterns from third-party cloud service provider and 

malicious attackers. Second, I investigate a load balance 

problem in applying ORAM on distributed file systems. 

This problem is proved to be NP-hard, and formulated as a 

mixed integer linear programming (MILP) problem. I 

propose a low-complexity algorithm that can deal with 

large-scale problem instances with respect to big data. 

Third, extensive simulations are conducted to show that 
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the performance of my proposed algorithm is close to the 

optimal solution, and significantly outperforms a random 

data placement algorithm. 
 

The rest of this paper are organized as follows. I review 

important related work in Section II. Section III presents 

some necessary preliminaries about ORAM algorithm and 

my motivation. The system model and problem 

formulation are given in Section IV, folloId by an efficient 

algorithm proposed in Section V. I show extensive 

simulation results in Section VI. Section VII finally 

concludes this paper. 

 

II. RELATED WORK 
 

A. Cloud storage 

Cloud storage has attracted a lot of attentions from both 

industry and academic. Many Ill-known cloud service 

providers have started their cloud storage services during 

past few years, such as Microsoft SkyDrive, Amazon S3, 

and Google Drive. RAID (Redundant Array of 

Inexpensive Disks) technique is integrated in HAIL [7] 

that manages remote file integrity and availability across a 

collection of servers. Similarly, Dabek et al. [8] use 

RAID-like techniques to ensure the availability and 

durability of data in distributed systems. To improve the 
reliability and security of cloud storage, Bessani et al. [9] 

have proposed a distributed storage system called 

DEPSKY that integrates encryption, encoding and 

replication. IRIS [10] is proposed as an authenticated file 

system that lets enterprises store data in the cloud with 

resilience against potentially untrusted cloud providers. 

There are several pro-posals dealing with data availability 

by constructing distributed storage systems across several 

cloud sites. Wu et al. [11] have proposed SPANStore, a 

key-value storage system that exports a unified view of 

storage services in geo-graphically distributed data 
centers. It minimizes an application provider’s cost with 

three key techniques, i.e., exploiting pricing discrep-ancies 

across providers, estimating application workload at the 

right granularity, and minimizing the usage of 

computational resmyces. 

 

B. Oblivious RAM 

As originally proposed by Goldreich and Ostrovsky [12], 

ORAM allows a trusted processor to use an untrusted 

RAM. Most existing ORAM solutions use the basic 

memory struc-ture suggested by Ostrovsky’s Hierarchical 
Scheme [13]. The ORAM is arranged in a series of 

progressively larger caches. Each cache consists of a hash 

table of buckets. When a block is requested, the algorithm 

checks a bucket at each level of the hierarchy. If the block 

is found, the search continues for a dummy block such that 

the location of his desired block is hidden. Finally, the 

block is reinserted into the top-level cache. When a cache 

is close to overflowing, it is obliviously shuffled into the 

cache below it. 

Recent ORAM work has explored optimisations of the 

classic Hierarchical Scheme [13], [14], including the use 

of cuckoo hashing [15] and Bloom filters [16]. Williams et 

al. [17] have presented SR-ORAM as the first single-

round-trip polylogarithmic time ORAM that requires only 

logarithmic client storage. Taking only a single round trip 

to perform a query, SR-ORAM has an online 
communication/computation cost of O(log n log log n). 

Lorch et al. [18] have presented Shroud, a general storage 

system that hides data access pat-terns from the servers. 

Shroud uses many secure coprocessors acting in parallel as 

client proxies in the data center. 

 

III. PRELIMINARIES AND MOTIVATION 

 

In this section, I first present some necessary background 

about ORAM, and then show the load unbalance 

phenomenon that motivates my proposal. 
 

 
Fig. 1.   ORAM-based cloud storage. 

 

A. The ORAM algorithm 
I consider a client that would like to store and retrieve its 

big data in cloud that is honest but curious. In other words, 

the cloud cannot tamper with or modify the data, but could 

learn information about the data. The data are divided into 

blocks, each of which is identified by a unique address. 

For example, a typical value of block size is 64KB or 

256KB. Data stored on cloud are organized as a tree, 

where each node is referred to as a bucket that stores 

several data blocks. An example of a binary tree structure 

is shown in Fig. 1. Note that any arbitrary tree structure is 

applicable in ORAM. Following the work in [6], I 

translate each read or write operation into two primitives 
ReadAndRemoveand Add that are definedas follows. 

 

ReadAndRemove(u): given an address u specifiedby 

theclient, the cloud returns the corresponding data block, 

and removes it from storage. 

Add(u, d): the client writes block d to address u at the 

clientstorage. 

 

With above two primitives, each read(u) operation can be 

replaced by a ReadAndRemove(u)folloId by an Add(u, d) 

that writes the same data block back to address u. 
Similarly, to implement a write(u, d) operation, I conduct 

a redundant ReadAndRemove(u) before Add(u, d). 
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Although the numberof access operations are doubled in 

ORAM, it prevents the untrusted cloud from 

distinguishing read and write operations. The 

implementation of ReadAndRemove(u) and Add(u, d) is 

critical for hiding access patterns in ORAM. When a 
datablock is written into the cloud storage, it is always 

inserted into the root bucket in the level 0 as shown in Fig. 

1. As more data blocks are being added in the root bucket, 

it will eventually be full without residual capacity to 

accommodate new blocks. To avoid overflowing, data 

blocks in each non-leaf bucket are periodically evicted to 

its children buckets. I assign a random number called 

designator to each newly added data block to indicate 

which leaf bucket it is evicted to along the tree. Note that 

only the client knows the mapping betIen block address 

and its associated designator. At each level of tree, the 
client randomly chooses several buckets to evict. In order 

to prevent the cloud from tracking the eviction process, 

dummy blocks are inserted into other children buckets that 

do not receive the real data block. 
 

To read a data block, the client first looks up its 

correspond-ing designator in local storage, and then reads 

all buckets along the path betIen the root and the leaf 

bucket indicated by this designator in the tree. When the 

data block is found, I remove it from its current bucket, 
and write it back to the root bucket with a new designator. 

In such a way, the cloud cannot infer which block is read 

because repeated reads for the same block will produce 

different lookup paths through the tree. 

 

B. Motivation 

To deploy an ORAM-based storage in a distributed 

system, I need to partition the corresponding tree structure 

into multiple parts, each of which is stored in a server. For 

example, I consider to store the ORAM tree shown in Fig. 

1 into three servers, each of which can accommodate at 
most 5 buckets. A partition scheme is shown in Fig. 1. 

Since the root bucket is accessed in each read and write 

operation, the server A holding the root bucket has the 

highest access load. On the other hand, each read 

operation only involves one leaf node, leading to the loIst 

load on server B that stores five leaf nodes in level 3. 

From this example, I observe that ORAM-based storage 

would lead to serious unbalanced data access load among 

servers without a delicate bucket placement, which 

motivates us to develop an algorithm to optimize the data 

placement in next section. 
 

IV. SYSTEM MODEL AND PROBLEM 

FORMULATION 

 

I consider to deploy an ORAM-based storage with n 

buckets of size B to m servers residing in multiple clouds. 

Some authorized users generate a set of access requests 

that have been translated into a serious of 

ReadAndRemove(u) and Add(u, d) operations. Each 

bucket is the minimum storageunit, and is associated with 

an access rate ai due to the read, write, and eviction 

operations in ORAM. Note that the access rate of each 

bucket can be estimated according to the characteristics of 

the ORAM algorithm, such as tree structure, and eviction 

probability. The i-th server can accommodate at most Ci 

buckets. Based on the system model, my load balance 
problem can be described as a max-min problem as 

follows. 

 

Definition 1: The problem of load balance for 

deployingORAM-based storage in clouds (LBOC): given 

a tree-based ORAM structure, and a set of storage servers, 

the LBOC problem seeks a data placement such that the 

maximum access load among all servers is minimized. 
 

Since a bucket is the minimum access unit in ORAM, I 

define binary variables xij to describe bucket placement as 

follows. 

  1,   if the i-th bucket is placed on the j-th server,  

xij = 
0,   otherwise. 

 
   
 

I also define a variable yj to represent the total access rate 

in the j-th server, and the LBOC problem can be 

formulatedas a mixed integer linear programming (MILP) 

as follows. 
 

min Y  

yj  ≤ Y, ∀1 ≤ j ≤ m; (1) 

N  

yj  =aixij , ∀1 ≤ j ≤ m; (2) 

i=1  

M  

xij  = 1, ∀1 ≤ i ≤ n; (3) 

j=1  

N  

xij  ≤ Cj , ∀1 ≤ j ≤ m; (4) 

i=1  

xij∈ {0, 1}, ∀1 ≤ i ≤ n, 1 ≤ j ≤ m.  
 

In  above formulation, variable  Y  denotes  the maximum 

access rate of all servers, which is guaranteed by 

constraint 
 

(1). The calculation of total access rate yj of each server is 

represented by constraint (2). I impose constraint (3) 

because each bucket has to be placed at only one server. 

Finally, the capacity constraint of each server is 

represented by (4). In the following, I analyze the hardness 

of the LBOC problem by proving its NP-hardness in a 

formal way. 

 

Theorem 1: The LBOC problem is NP-hard. 
Proof: In order to prove an optimization problem tobe NP-

hard, I need to show the NP-completeness of its decision 

form, i.e., I attempt to find a bucket placement such that 

the maximum access load is no greater than Y . It is easy 

to see that such a problem is in NP class as the objective 
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associated with a given solution can be evaluated in a 

polynomial time. The remaining proof is done by reducing 

the Ill-known 2-partition problem, i.e., given a set of 

numbers S = {s1, s2 , ..., sn }, I attempt to divide them into 

two sets S1 and S2  such that si∈S1si =    sj∈S2sj . 
 

I now describe the reduction from the 2-partition problem 

to an instance of the LBOC problem. I create an ORAM 

storage with n buckets, each of which has an access rate ai 

= si. There are two severs, each of which can store at most 

n 

buckets. Finally, I let Y = 

1  

s . It is easy to verify 

 

2 

 

 si∈Si  
 

that the 2-partition problem has a solution if and only if 

the constructed LBO problem has a solution that satisfies 
the load requirements.  

 

V.  ALGORITHM DESIGN 

 

Due to the NP-hardness, I design an efficient heuristic 

algorithm to solve the LBOC problem in this section. My 

basic idea is to first solve the MILP problem formulated in 

last section by relaxing all integer variables, and then find 

a feasible integer solution by rounding the results. 

Although the time complexity of this algorithm is 

polynomial, additional challenges arise in dealing with big 
data storage. The ORAM tree would contain a large 

number of buckets to accommodate big data, resulting in 

too many variables and constraints in the formulation. 

Solving such a large-scale linear programming, even with 

all real variables, would be time-consuming, or 

evenimpossible because of physical memory constraints 

on some computers. 
 

To overcome this difficulty, I propose a low-complexity 

algorithm called ILB (Iterative Load Balancer) to 
iteratively place buckets on servers, such that I only need 

to deal with a small-scale linear programming in each 

iteration. The pseudo code of my algorithm is shown in 

the following Algorithm 1. 

 

Algorithm 1 The ILB algorithm 

1: C j
res  = Cj , ∀1 ≤ j ≤ m;  

2: yj
curr  = 0, ∀1 ≤ j ≤ m;  

3: while there are buckets that haven’t been placed do  

4: put a set of unplaced buckets in set N ;  
5: solve the following linear programming;  
 

 min Y  

yj + yj
curr  ≤ Y, ∀1 ≤ j ≤ m; (5) 

yj  = aixij , ∀1 ≤ j ≤ m; (6) 

 i∈N  

 m  

 xij  = 1, ∀i∈ N ; (7) 

 j=1  

xij  ≤ C j
res , ∀1 ≤ j ≤ m; (8) 

i∈N   

0 ≤ xij  ≤ 1, ∀i∈ N , 1 ≤ j ≤ m. (9) 
 

6: sort variables xij in a descending order according to 

their results;  

7: for each xijin the sorted order do  

8: if the i-th bucket in N hasn’t been placed andC 

j
res> 0 then 

9: place this bucket on the j-th server;  

10: C res = C res 

j j    − 1;  
11: ycurrcurr 
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Fig. 2.   Comparison with optimal solution in 10 random 

instances. 

 

VI. PERFORMANCE EVALUAT ION 

 

In this section, I study the performance of my proposed 

algorithm under various network settings. For comparison, 

I also show the performance of a random placement 

algorithm denoted by RAND. All simulations are 

conducted using Mat- lab in a computer equipped with 3.4 

GHz Intel Core i7 CPU and 8G memory. 
 

I first evaluate the performance of ILB by comparing its 

results with the optimal solution. I consider to deploy 200 

data buckets to 10 servers, and show the results of 10 

random instances in Fig. 2. In average, the performance of 

ILB is 1.15 times of optimal solution, while the 

corresponding ratio of RAND is 1.91. 
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j and  yj residual capacity and current access load on the j-

th server, respectively. After their initialization in lines 1 

and 2, I conduct bucket placement in iterations in the 

following while loop. In each iteration, I consider a set of 

buckets N , and solve a linear programming with respect 
to N , current access load and Cj

res on each server. 

Different from the MILP in last section, I relax xij by 

letting it be a real variable betIen 0 and 1 as shown in (9). 

In addition, I take current access load ycurr   into 

consideration in constraint (5), and constrain j  the 

capacity of each server with C res  in (8).After solving this  

linear programming, I sort  variable xij in  a  

descending  order  according  to  their results.  I place the 

i-th bucket in set N to the server with maximum value of  

xij among all servers.  Such  placement  is  expected 

toachieve comparable performance to the  optimal  
solution Because the  real  value  xij   would  represent the 

probability of  the corresponding optimal  data  placement.  

Finally I finish current iteration by updating the values of 

C resj and by averaging results over 50 random instances. 

The influence of number of buckets is first investigated by 

changing its value from 600 to 1000, and the number of 

servers is fixed to 10. The server capacity is randomly 

specified as a Gaussian distribution with mean of 100 and 

variance of 20. In each iteration of ILB, I consider data 

placement for 100 buckets. 

 
As shown in Fig. 3, the performance of both algorithms 

shows as an increasing function of bucket number. 

Moreover, the performance gap betIen two algorithms 

increases as the bucket number grows. For example, when 

the number of buckets is 600, the maximum access rate of 

RAND is 17% higher. The performance gap increases to 

33% as bucket number grows to 1000. The results indicate 

that ILB can effectively reduce the maximum access rate 

because of my delicate design. 

 

I then study the effect of different variance of server 

capacity in instances with 1000 buckets and 10 servers. 
The mean value of server capacity is fixed to 100. As 

shown in Fig. 4, although the performance of both 

algorithms increases as the variance grows, their 

performance gap becomes small.  

 

That is because the servers with small capacity quickly 

becomes full during data placement, while lots of buckets 

have to be accommodated in the servers with large 

capacity, which leading to high  

 

 
Fig. 4.   Maximum access rate versus different variance of 

server capacity. 

 

 
Fig. 5.   Execution time under different instance scales. 

 

VII. CONCLUSION 

 

In this paper, I apply the ORAM algorithm to achieve 

privacy-preserving access to big data in clouds. I observe a 
load unbalance phenomenon after deploying ORAM-

based storage to multiple servers, which motivates us to 

investigate a data placement problem to achieve load 

balance.  

This problem is proved to be NP-hard. I propose a low-

complexity algo-rithm to solve this problem with respect 

to large data volumes. Simulation results show that the 

performance of my proposed algorithm is close to optimal 

solution, and it outperforms a random data placement 

algorithm. 
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